Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
2.
BMJ ; 384: q379, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350693
3.
PLoS Comput Biol ; 19(6): e1011257, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37363928

RESUMEN

Cardiac pump function arises from a series of highly orchestrated events across multiple scales. Computational electromechanics can encode these events in physics-constrained models. However, the large number of parameters in these models has made the systematic study of the link between cellular, tissue, and organ scale parameters to whole heart physiology challenging. A patient-specific anatomical heart model, or digital twin, was created. Cellular ionic dynamics and contraction were simulated with the Courtemanche-Land and the ToR-ORd-Land models for the atria and the ventricles, respectively. Whole heart contraction was coupled with the circulatory system, simulated with CircAdapt, while accounting for the effect of the pericardium on cardiac motion. The four-chamber electromechanics framework resulted in 117 parameters of interest. The model was broken into five hierarchical sub-models: tissue electrophysiology, ToR-ORd-Land model, Courtemanche-Land model, passive mechanics and CircAdapt. For each sub-model, we trained Gaussian processes emulators (GPEs) that were then used to perform a global sensitivity analysis (GSA) to retain parameters explaining 90% of the total sensitivity for subsequent analysis. We identified 45 out of 117 parameters that were important for whole heart function. We performed a GSA over these 45 parameters and identified the systemic and pulmonary peripheral resistance as being critical parameters for a wide range of volumetric and hemodynamic cardiac indexes across all four chambers. We have shown that GPEs provide a robust method for mapping between cellular properties and clinical measurements. This could be applied to identify parameters that can be calibrated in patient-specific models or digital twins, and to link cellular function to clinical indexes.


Asunto(s)
Ventrículos Cardíacos , Corazón , Humanos , Corazón/fisiología , Atrios Cardíacos , Modelos Cardiovasculares
4.
J Biol Chem ; 299(3): 102975, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738787

RESUMEN

Ca2+ and voltage-activated K+ (BK) channels are ubiquitous ion channels that can be modulated by accessory proteins, including ß, γ, and LINGO1 BK subunits. In this study, we utilized a combination of site-directed mutagenesis, patch clamp electrophysiology, and molecular modeling to investigate if the biophysical properties of BK currents were affected by coexpression of LINGO2 and to examine how they are regulated by oxidation. We demonstrate that LINGO2 is a regulator of BK channels, since its coexpression with BK channels yields rapid inactivating currents, the activation of which is shifted ∼-30 mV compared to that of BKα currents. Furthermore, we show the oxidation of BK:LINGO2 currents (by exposure to epifluorescence illumination or chloramine-T) abolished inactivation. The effect of illumination depended on the presence of GFP, suggesting that it released free radicals which oxidized cysteine or methionine residues. In addition, the oxidation effects were resistant to treatment with the cysteine-specific reducing agent DTT, suggesting that methionine rather than cysteine residues may be involved. Our data with synthetic LINGO2 tail peptides further demonstrate that the rate of inactivation was slowed when residues M603 or M605 were oxidized, and practically abolished when both were oxidized. Taken together, these data demonstrate that both methionine residues in the LINGO2 tail mediate the effect of oxidation on BK:LINGO2 channels. Our molecular modeling suggests that methionine oxidation reduces the lipophilicity of the tail, thus preventing it from occluding the pore of the BK channel.


Asunto(s)
Cisteína , Canales de Potasio de Gran Conductancia Activados por el Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Cisteína/metabolismo , Oxidación-Reducción , Péptidos/metabolismo , Metionina/metabolismo , Calcio/metabolismo
5.
Comput Biol Med ; 153: 106528, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36634600

RESUMEN

BACKGROUND: Personalised computer models are increasingly used to diagnose cardiac arrhythmias and tailor treatment. Patient-specific models of the left atrium are often derived from pre-procedural imaging of anatomy and fibrosis. These images contain noise that can affect simulation predictions. There are few computationally tractable methods for propagating uncertainties from images to clinical predictions. METHOD: We describe the left atrium anatomy using our Bayesian shape model that captures anatomical uncertainty in medical images and has been validated on 63 independent clinical images. This algorithm describes the left atrium anatomy using Nmodes=15 principal components, capturing 95% of the shape variance and calculated from 70 clinical cardiac magnetic resonance (CMR) images. Latent variables encode shape uncertainty: we evaluate their posterior distribution for each new anatomy. We assume a normally distributed prior. We use the unscented transform to sample from the posterior shape distribution. For each sample, we assign the local material properties of the tissue using the projection of late gadolinium enhancement CMR (LGE-CMR) onto the anatomy to estimate local fibrosis. To test which activation patterns an atrium can sustain, we perform an arrhythmia simulation for each sample. We consider 34 possible outcomes (31 macro-re-entries, functional re-entry, atrial fibrillation, and non-sustained arrhythmia). For each sample, we determine the outcome by comparing pre- and post-ablation activation patterns following a cross-field stimulus. RESULTS: We create patient-specific atrial electrophysiology models of ten patients. We validate the mean and standard deviation maps from the unscented transform with the same statistics obtained with 12,000 Monte Carlo (ground truth) samples. We found discrepancies <3% and <2% for the mean and standard deviation for fibrosis burden and activation time, respectively. For each patient case, we then compare the predicted outcome from a model built on the clinical data (deterministic approach) with the probability distribution obtained from the simulated samples. We found that the deterministic approach did not predict the most likely outcome in 80% of the cases. Finally, we estimate the influence of each source of uncertainty independently. Fixing the anatomy to the posterior mean and maintaining uncertainty in fibrosis reduced the prediction of self-terminating arrhythmias from ≃14% to ≃7%. Keeping the fibrosis fixed to the sample mean while retaining uncertainty in shape decreased the prediction of substrate-driven arrhythmias from ≃33% to ≃18% and increased the prediction of macro-re-entries from ≃54% to ≃68%. CONCLUSIONS: We presented a novel method for propagating shape uncertainty in atrial models through to uncertainty in numerical simulations. The algorithm takes advantage of the unscented transform to compute the output distribution of the outcomes. We validated the unscented transform as a viable sampling strategy to deal with anatomy uncertainty. We then showed that the prediction computed with a deterministic model does not always coincide with the most likely outcome. Finally, we found that shape uncertainty affects the predictions of macro-re-entries, while fibrosis uncertainty affects the predictions of functional re-entries.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Humanos , Medios de Contraste , Incertidumbre , Teorema de Bayes , Gadolinio , Atrios Cardíacos , Imagen por Resonancia Magnética/métodos , Fibrosis
6.
Front Epidemiol ; 3: 1076188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38455929

RESUMEN

Introduction: Efforts to reduce the stigma associated with mental illness have intensified over the past 30 years with a particular focus on improving public attitudes. Difficult economic circumstances can be harmful to intergroup relations, but little is known about whether there is a relationship between socioeconomic conditions and attitudes towards people with mental illnesses. Methods: Random effects logistic regression modelling was employed to explore the relationship between individual financial circumstances, contextual socioeconomic factors and difficulty speaking to a person with a significant mental illness across European countries. Results: Lower GDP per capita and higher income inequality at the country level, alongside individual financial difficulties, were each associated with a greater likelihood of reporting difficulty speaking to a person with a significant mental illness. Discussion: Micro and macro-economic factors are associated with public attitudes towards people with mental illness across Europe. With prolonged economic instability predicted over the coming years in Europe it is important that these findings are taken into consideration when designing mental health and social policies, in order to safeguard the progress that has been made in reducing mental health stigma to date.

7.
Sci Rep ; 12(1): 16572, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195766

RESUMEN

Models of electrical excitation and recovery in the heart have become increasingly detailed, but have yet to be used routinely in the clinical setting to guide personalized intervention in patients. One of the main challenges is calibrating models from the limited measurements that can be made in a patient during a standard clinical procedure. In this work, we propose a novel framework for the probabilistic calibration of electrophysiology parameters on the left atrium of the heart using local measurements of cardiac excitability. Parameter fields are represented as Gaussian processes on manifolds and are linked to measurements via surrogate functions that map from local parameter values to measurements. The posterior distribution of parameter fields is then obtained. We show that our method can recover parameter fields used to generate localised synthetic measurements of effective refractory period. Our methodology is applicable to other measurement types collected with clinical protocols, and more generally for calibration where model parameters vary over a manifold.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos , Calibración , Electrofisiología Cardíaca , Humanos , Distribución Normal
8.
Front Physiol ; 12: 765622, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671278

RESUMEN

[This corrects the article DOI: 10.3389/fphys.2021.693015.].

9.
Front Physiol ; 12: 693015, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366883

RESUMEN

Calibration of cardiac electrophysiology models is a fundamental aspect of model personalization for predicting the outcomes of cardiac therapies, simulation testing of device performance for a range of phenotypes, and for fundamental research into cardiac function. Restitution curves provide information on tissue function and can be measured using clinically feasible measurement protocols. We introduce novel "restitution curve emulators" as probabilistic models for performing model exploration, sensitivity analysis, and Bayesian calibration to noisy data. These emulators are built by decomposing restitution curves using principal component analysis and modeling the resulting coordinates with respect to model parameters using Gaussian processes. Restitution curve emulators can be used to study parameter identifiability via sensitivity analysis of restitution curve components and rapid inference of the posterior distribution of model parameters given noisy measurements. Posterior uncertainty about parameters is critical for making predictions from calibrated models, since many parameter settings can be consistent with measured data and yet produce very different model behaviors under conditions not effectively probed by the measurement protocols. Restitution curve emulators are therefore promising probabilistic tools for calibrating electrophysiology models.

10.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190349, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32448065

RESUMEN

Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations to take decisions. The field of cardiac simulation has begun to explore and adopt UQ methods to characterize uncertainty in model inputs and how that propagates through to outputs or predictions; examples of this can be seen in the papers of this issue. In this review and perspective piece, we draw attention to an important and under-addressed source of uncertainty in our predictions-that of uncertainty in the model structure or the equations themselves. The difference between imperfect models and reality is termed model discrepancy, and we are often uncertain as to the size and consequences of this discrepancy. Here, we provide two examples of the consequences of discrepancy when calibrating models at the ion channel and action potential scales. Furthermore, we attempt to account for this discrepancy when calibrating and validating an ion channel model using different methods, based on modelling the discrepancy using Gaussian processes and autoregressive-moving-average models, then highlight the advantages and shortcomings of each approach. Finally, suggestions and lines of enquiry for future work are provided. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Asunto(s)
Fenómenos Electrofisiológicos , Modelos Cardiovasculares , Calibración , Canales Iónicos/metabolismo
11.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190345, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32448072

RESUMEN

In patients with atrial fibrillation, local activation time (LAT) maps are routinely used for characterizing patient pathophysiology. The gradient of LAT maps can be used to calculate conduction velocity (CV), which directly relates to material conductivity and may provide an important measure of atrial substrate properties. Including uncertainty in CV calculations would help with interpreting the reliability of these measurements. Here, we build upon a recent insight into reduced-rank Gaussian processes (GPs) to perform probabilistic interpolation of uncertain LAT directly on human atrial manifolds. Our Gaussian process manifold interpolation (GPMI) method accounts for the topology of the atrium, and allows for calculation of statistics for predicted CV. We demonstrate our method on two clinical cases, and perform validation against a simulated ground truth. CV uncertainty depends on data density, wave propagation direction and CV magnitude. GPMI is suitable for probabilistic interpolation of other uncertain quantities on non-Euclidean manifolds. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Asunto(s)
Función Atrial , Sistema de Conducción Cardíaco/fisiología , Modelos Cardiovasculares , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Distribución Normal , Probabilidad
12.
Med Image Anal ; 61: 101626, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32000114

RESUMEN

Patient-specific computational models of structure and function are increasingly being used to diagnose disease and predict how a patient will respond to therapy. Models of anatomy are often derived after segmentation of clinical images or from mapping systems which are affected by image artefacts, resolution and contrast. Quantifying the impact of uncertain anatomy on model predictions is important, as models are increasingly used in clinical practice where decisions need to be made regardless of image quality. We use a Bayesian probabilistic approach to estimate the anatomy and to quantify the uncertainty about the shape of the left atrium derived from Cardiac Magnetic Resonance images. We show that we can quantify uncertain shape, encode uncertainty about the left atrial shape due to imaging artefacts, and quantify the effect of uncertain shape on simulations of left atrial activation times.


Asunto(s)
Atrios Cardíacos/anatomía & histología , Imagen por Resonancia Magnética , Modelos Cardiovasculares , Artefactos , Teorema de Bayes , Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos/diagnóstico por imagen , Humanos , Análisis de Componente Principal , Incertidumbre
13.
IEEE Trans Biomed Eng ; 67(1): 99-109, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30969911

RESUMEN

OBJECTIVE: Local activation time (LAT) mapping of the atria is important for targeted treatment of atrial arrhythmias, but current methods do not interpolate on the atrial manifold and neglect uncertainties associated with LAT observations. In this paper, we describe novel methods to, first, quantify uncertainties in LAT arising from bipolar electrogram analysis and assignment of electrode recordings to the anatomical mesh, second, interpolate uncertain LAT measurements directly on left atrial manifolds to obtain complete probabilistic activation maps, and finally, interpolate LAT jointly across both the manifold and different S1-S2 pacing protocols. METHODS: A modified center of mass approach was used to process bipolar electrograms, yielding a LAT estimate and error distribution from the electrogram morphology. An error distribution for assigning measurements to the anatomical mesh was estimated. Probabilistic LAT maps were produced by interpolating on a left atrial manifold using Gaussian Markov random fields, taking into account observation errors and characterizing LAT predictions by their mean and standard deviation. This approach was extended to interpolate across S1-S2 pacing protocols. RESULTS: We evaluated our approach using recordings from three patients undergoing atrial ablation. Cross-validation showed consistent and accurate prediction of LAT observations both at different locations on the left atrium and for different S1-S2 intervals. SIGNIFICANCE: Interpolation of scalar and vector fields across anatomical structures from point measurements is a challenging problem in biomedical engineering, compounded by uncertainties in measurements and meshes. New methods and approaches are required, and in this paper, we have demonstrated an effective method for probabilistic interpolation of uncertain LAT.


Asunto(s)
Función Atrial/fisiología , Técnicas Electrofisiológicas Cardíacas/métodos , Atrios Cardíacos/diagnóstico por imagen , Modelos Estadísticos , Procesamiento de Señales Asistido por Computador , Humanos
14.
J Oncol ; 2019: 3980273, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31346333

RESUMEN

Cathepsin S (CTSS) has previously been implicated in a number of cancer types, where it is associated with poor clinical features and outcome. To date, patient outcome in breast cancer has not been examined with respect to this protease. Here, we carried out immunohistochemical (IHC) staining of CTSS using a breast cancer tissue microarray in patients who received adjuvant therapy. We scored CTSS expression in the epithelial and stromal compartments and evaluated the association of CTSS expression with matched clinical outcome data. We observed differences in outcome based on CTSS expression, with stromal-derived CTSS expression correlating with a poor outcome and epithelial CTSS expression associated with an improved outcome. Further subtype characterisation revealed high epithelial CTSS expression in TNBC patients with improved outcome, which remained consistent across two independent TMA cohorts. Further in silico gene expression analysis, using both in-house and publicly available datasets, confirmed these observations and suggested high CTSS expression may also be beneficial to outcome in ER-/HER2+ cancer. Furthermore, high CTSS expression was associated with the BL1 Lehmann subgroup, which is characterised by defects in DNA damage repair pathways and correlates with improved outcome. Finally, analysis of matching IHC analysis reveals an increased M1 (tumour destructive) polarisation in macrophage in patients exhibiting high epithelial CTSS expression. In conclusion, our observations suggest epithelial CTSS expression may be prognostic of improved outcome in TNBC. Improved outcome observed with HER2+ at the gene expression level furthermore suggests CTSS may be prognostic of improved outcome in ER- cancers as a whole. Lastly, from the context of these patients receiving adjuvant therapy and as a result of its association with BL1 subgroup CTSS may be elevated in patients with defects in DNA damage repair pathways, indicating it may be predictive of tumour sensitivity to DNA damaging agents.

15.
BJPsych Open ; 5(2): e19, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31068230

RESUMEN

BACKGROUND: Recent qualitative research suggests that changes to the way eligibility for welfare payments is determined in the UK may be detrimental to claimants with mental illnesses. No large-scale analysis has been undertaken to date.AimsTo examine differences between claimants with psychiatric conditions compared with non-psychiatric conditions in the number of claims disallowed following a personal independence payment (PIP) eligibility assessment for existing disability living allowance (DLA) claimants. METHOD: Administrative data on DLA claimants with psychiatric conditions transferring to PIP between 2013 and 2016 was compared with claimants with non-psychiatric conditions to explore differences in the number of claims disallowed following an eligibility assessment. RESULTS: Claimants with a mental illness were 2.40 (95% CI 2.36-2.44) times more likely to have their existing DLA entitlement removed following a PIP eligibility assessment than claimants with musculoskeletal conditions, neurological conditions and diabetes. CONCLUSIONS: PIP eligibility assessment outcomes show marked differences by health condition, raising questions as to whether the process is equitable.Declaration of interestNone.

17.
J Chem Phys ; 149(17): 174114, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30408987

RESUMEN

Three active learning schemes are used to generate training data for Gaussian process interpolation of intermolecular potential energy surfaces. These schemes aim to achieve the lowest predictive error using the fewest points and therefore act as an alternative to the status quo methods involving grid-based sampling or space-filling designs like Latin hypercubes (LHC). Results are presented for three molecular systems: CO2-Ne, CO2-H2, and Ar3. For each system, two of the active learning schemes proposed notably outperform LHC designs of comparable size, and in two of the systems, produce an error value an order of magnitude lower than the one produced by the LHC method. The procedures can be used to select a subset of points from a large pre-existing data set, to select points to generate data de novo, or to supplement an existing data set to improve accuracy.

18.
J Chem Phys ; 147(16): 161706, 2017 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-29096507

RESUMEN

A procedure is proposed to produce intermolecular potential energy surfaces from limited data. The procedure involves generation of geometrical configurations using a Latin hypercube design, with a maximin criterion, based on inverse internuclear distances. Gaussian processes are used to interpolate the data, using over-specified inverse molecular distances as covariates, greatly improving the interpolation. Symmetric covariance functions are specified so that the interpolation surface obeys all relevant symmetries, reducing prediction errors. The interpolation scheme can be applied to many important molecular interactions with trivial modifications. Results are presented for three systems involving CO2, a system with a deep energy minimum (HF-HF), and a system with 48 symmetries (CH4-N2). In each case, the procedure accurately predicts an independent test set. Training this method with high-precision ab initio evaluations of the CO2-CO interaction enables a parameter-free, first-principles prediction of the CO2-CO cross virial coefficient that agrees very well with experiments.

19.
Lancet Psychiatry ; 4(7): 512-513, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28552499
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...